
Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

A Linear Algebra Approach to Procedural Terrain

Generation And Texturing

Benedict Presley - 13523067

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13523067@std.stei.itb.ac.id, presleybenedict04@gmail.com

Abstract—Procedural terrain generation is a pivotal technique

in computer graphics and interactive applications, enabling the

creation of expansive, natural-looking environments without the

overhead of manual modeling. This paper presents a linear algebra

perspective on procedural terrain generation, focusing particularly

on Perlin Noise and its extension to fractal Brownian motion. To

yield multi-scale detail, multiple octaves of noise are summed

according to user-defined lacunarity and persistence, capturing

both large landmasses and fine-grained surface features. The noise

values are subsequently normalized and mapped to terrain types—

such as oceans, beaches, and mountains—through threshold-based

color assignments. An implementation is provided that

demonstrates dynamic map expansion and user-controlled

scrolling, illustrating how these concepts integrate into a scalable,

interactive system. Ultimately, this paper aims to unify key

mathematical and computational concepts for generating and

visualizing procedural terrains that are both efficient to compute

and plausible in appearance.

Keywords—Fractal Brownian Motion, Linear Algebra, Perlin

Noise, Procedural Terrain Generation

I. INTRODUCTION

Procedural terrain generation has become an essential aspect

of various applications, ranging from video game design to

geographic simulations and virtual reality environments. This

technique allows developers to create complex, realistic, and

diverse landscapes algorithmically, while avoiding the time-

intensive process of manual design. Traditional procedural

terrain generation often relies on heuristic methods such as

Perlin noise, this paper introduces a modified approach that

integrates linear algebra to enhance the traditional noise-based

generation methods.

Perlin noise is a gradient-based noise function commonly

used in procedural generation to produce natural-looking

textures and terrain. It generates smooth, continuous patterns by

interpolating random gradient vectors across a grid. In terrain

generation, Perlin noise is often used to define elevation values

at each point on a 2D grid, creating hills, valleys, and other

natural features. This paper explores a method for calculating

noise using linear algebraic concepts, including the Hadamard

product, to introduce greater flexibility and control over the

generated terrain.

This paper presents an algorithm for terrain generation that

reimagines the Perlin noise calculation through linear algebraic

techniques. Unlike traditional methods that require fixed-size

grid chunks, this algorithm allows for the calculation of terrain

chunks of various sizes, offering enhanced flexibility in

managing terrain scalability and resolution. To texture the

generated terrain, the algorithm utilizes a color distribution map,

where each noise value is mapped to a specific color based on

predefined thresholds. The integration of a flexible color

distribution map also allows for dynamic customization of

terrain aesthetics. This adaptability makes the algorithm suitable

for a wide range of artistic and functional requirements.

Additionally, the algorithm supports seamless transitions

between terrain chunks, ensuring that generated landscapes

appear continuous and coherent. This feature is particularly

valuable for applications requiring large, interconnected worlds,

such as open-world games or virtual simulations.

II. LITERATURE REVIEW

A. Vectors

A vector in the context of linear algebra is a quantity that

has both magnitude and direction that can be represented as

an ordered list of numbers (often called components). Vectors

can exist in various dimensions.

for example, in a 2D plane, a vector 𝑣 can be written as

[
𝑣𝑥

𝑣𝑦
]. In a 3D plane, a vector 𝑣 and be written as [

𝑣𝑥

𝑣𝑦

𝑣𝑧

].

Key properties of vectors include:

1) Addition: Two vectors of the same dimension can be

added component-wise. For example, given vectors 𝑢

and 𝑣

𝑢 ± 𝑣 = [

𝑢1

𝑢2

⋮
𝑢𝑛

] ± [

𝑣1

𝑣2

⋮
𝑣𝑛

]

Note that this operation is commutative and associative.

2) Scalar Multiplication: A vector can be scaled by a scalar

(a real number), multiplying each component by that

scalar. For example, given a scalar 𝑐 and a vector 𝑣

𝑐𝑣 = [

𝑐𝑣1

𝑐𝑣2

⋮
𝑐𝑣𝑛

]

For two scalars 𝑐 and 𝑑 and two vectors 𝑢 and 𝑣, the

following applies

mailto:13523067@std.stei.itb.ac.id
mailto:presleybenedict04@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

𝑐(𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣

(𝑐 + 𝑑)𝑢 = 𝑐𝑢 + 𝑑𝑢

(𝑐𝑑)𝑢 = 𝑐(𝑑𝑢)

3) Magnitude (Norm): The length or magnitude of a vector

𝑣 is given by

||𝑣|| = √𝑣1
2 + 𝑣2

2 + ⋯ + 𝑣𝑛
2

4) Direction: The direction of a vector is the orientation in

space and is often used in geometry and physics to

indicate an object’s orientation of movement or force

application.

B. Dot Product

The dot product (also known as the scalar product) of two

vectors 𝑎 and 𝑏 is defined as:

𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛

This operation results in a single scalar value. The dot

product between two vectors measures how much they align

or project onto each other. It is related to the cosine of the

angle 𝜃:

𝑎 ∙ 𝑏 = ||𝑎||||𝑏|| cos(𝜃)

The dot product is essential in gradient-based noise

functions such as Perlin noise, where the contribution from

gradient vectors is computed via dot products with

displacement vectors.

C. Matrices

A matrix is a rectangular array of values arranged in rows

and columns. An 𝑚 × 𝑛 matrix has 𝑚 rows and 𝑛 columns.

Matrices are powerful tools in linear transformations and can

represent operations such as rotation, scaling, or shear in

multiple dimensions.

Key properties of matrices include:

1) Addition: Two matrices of the same dimensions can be

added component-wise. For example, given two matrices

𝐴 and 𝐵

[

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

] + [

𝐵11 𝐵12 … 𝐵1𝑛

𝐵21 𝐵22 … 𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐵𝑛1 𝐵𝑛2 … 𝐵𝑛𝑛

]

= [

𝐴11 + 𝐵11 𝐴12 + 𝐵12 … 𝐴1𝑛 + 𝐵1𝑛

𝐴21 + 𝐵21 𝐴22 + 𝐵22 … 𝐴2𝑛 + 𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 + 𝐵𝑛1 𝐴𝑛2 + 𝐵𝑛2 … 𝐴𝑛𝑛 + 𝐵𝑛𝑛

]

2) Scalar Multiplication: Multiplying a matrix by a scalar

multiplies each entry in the matrix by that scalar. For

example, given a scalar 𝑐 and a matrix 𝐴

𝑐 [

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

] = [

𝑐𝐴11 𝑐𝐴12 … 𝑐𝐴1𝑛

𝑐𝐴21 𝑐𝐴22 … 𝑐𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝑐𝐴𝑛1 𝑐𝐴𝑛2 … 𝑐𝐴𝑛𝑛

]

3) Matrix Multiplication: If 𝐴 if an 𝑚 × 𝑝 matrix and 𝐵 is a

𝑝 × 𝑛 matrix, then their resulting multiplication 𝐶 is an

𝑚 × 𝑛 matrix. 𝐶 is given by

𝐶𝑖𝑗 = ∑ 𝐴𝑖𝑘𝐵𝑘𝑗

𝑝

𝑘=1

4) Transpose: The transpose of a matrix 𝐴 is formed by

flipping it over its diagonal, turning rows into columns

and vice versa. The transpose of a matrix 𝐴 is written as

𝐴𝑇 .

D. Hadamard Product

The Hadamard product (also known as the element-wise

product) of two matrices 𝐴 and 𝐵 of the same dimension is

given by multiplying corresponding entries of 𝐴 and 𝐵

together.

[

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

] ∘ [

𝐵11 𝐵12 … 𝐵1𝑛

𝐵21 𝐵22 … 𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐵𝑛1 𝐵𝑛2 … 𝐵𝑛𝑛

]

= [

𝐴11𝐵11 𝐴12𝐵12 … 𝐴1𝑛𝐵1𝑛

𝐴21𝐵21 𝐴22𝐵22 … 𝐴2𝑛𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1𝐵𝑛1 𝐴𝑛2𝐵𝑛2 … 𝐴𝑛𝑛𝐵𝑛𝑛

]

The Hadamard product is used to apply element-wise

scaling. In certain noise algorithms, particularly when

working with masks or blending different terrain layers,

element-wise operations can be applied to combine features

pixel-by-pixel or sample-by-sample.

Key properties of Hadamard product include:

1) Commutative: 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴

2) Associative: (𝐴 ∘ 𝐵) ∘ 𝐶 = 𝐴 ∘ (𝐵 ∘ 𝐶)

3) Distributive over addition: 𝐴 ∘ (𝐵 + 𝐶) = 𝐴 ∘ 𝐵 + 𝐴 ∘ 𝐶

E. Perlin Noise

Perlin noise is a gradient-based noise function introduced

by Ken Perlin. It is widely used in computer graphics and

procedural generation for creating natural-looking textures

and terrains. The core idea is to define a pseudo-random

gradient at each lattice (grid) point and blend these gradients

smoothly to generate coherent noise values across the space.

Figure 1. Example of perlin noise map [Source:

https://rtouti.github.io/graphics/perlin-noise-algorithm]

Perlin noise is generated in the following steps:

1. Gradient Vector Generation

The generation of 2D Perlin noise begins by

establishing a grid or lattice structure over the 2D plane,

with each intersection of grid lines corresponding to a

lattice point. For any given position (𝑥, 𝑦) within this

plane, the surrounding cell, defined by the integer

Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

coordinates of its four corner lattice points, is identified.

These lattice points serve as reference anchors for

calculating the noise value at the given position.

At each lattice point, a gradient vector is assigned.

These gradient vectors may either be randomly generated

and normalized to a fixed length or selected from a

predefined set of constant directions, such as vectors

uniformly distributed at 45° intervals in 2D. These

gradients represent directional influences that modulate

the contribution of each lattice point to the noise value at

a given position.

The role of gradient vectors is to facilitate a localized

and continuous influence on the noise field. For each

corner of the cell, a displacement vector is computed,

representing the difference between the position (𝑥, 𝑦)

and the coordinates of the lattice point. The dot product

of the gradient vector and the displacement vector is then

calculated, yielding a scalar value. This scalar value

quantifies the degree of alignment between the

displacement and the gradient direction, determining the

extent of the lattice point's contribution to the noise value

at the position.

2. Permutation Array

Permutation array in Perlin noise is a data structure

that facilitates the mapping of integer lattice coordinates

to pseudo-random gradients. The permutation array is a

shuffled list of integers, typically ranging from 0 to 255

in the classic implementation. (Note that the size of

permutation array doesn’t have to be 256). To ensure

consistency and wrap-around behavior, this array is

duplicated, resulting in a structure of length 512, where

the first 256 integers are repeated.

The primary purpose of the permutation array is to

provide a deterministic yet pseudo-random mapping

from grid points to gradient vectors. When computing

Perlin noise at a given coordinate (𝑥, 𝑦), the integer parts

of x and y are converted into lattice indices. This lookup

determines which gradient vector is associated with each

lattice point in the cell surrounding the input coordinate.

Importantly, the permutation array ensures that the same

lattice point always maps to the same gradient vector,

guaranteeing consistency across the noise field.

The generation of the permutation array begins with a

list of sequential integers (e.g., 0 to 255). This list is

shuffled using a pseudorandom number generator to

introduce randomness. After shuffling, the list is

appended to itself, creating a structure that inherently

supports wrap-around behavior.

3. Contribution Calculation

In the Perlin noise algorithm, constant vectors are used

at lattice points to ensure smooth transitions across the

noise field. These constant vectors are typically chosen

from a finite set of predefined directions. This approach

avoids the need to generate fully random gradient vectors

at runtime, which would require computationally

expensive normalization. Instead, the predefined set

ensures a consistent and uniform distribution of

gradients, contributing to the smoothness and continuity

of the noise.

The interaction between the constant gradients and the

input point is realized through the dot product operation.

At each lattice point, the gradient vector represents the

local orientation or slope. For a given input position

(𝑥, 𝑦) within a cell, a displacement vector is computed

from each lattice point to the input point, capturing the

relative position and direction. The dot product between

the gradient vector and the displacement vector yields a

scalar value that quantifies how strongly the

displacement aligns with the gradient. This scalar value

represents the contribution of that lattice point to the

overall noise value at (𝑥, 𝑦).

The dot product mechanism ensures that the influence

of each lattice point is determined not only by its

proximity to the input point but also by the alignment of

its gradient with the displacement. As a result, the

contributions from all four corners of the cell vary

smoothly, depending on the position within the cell.

4. Interpolation

To compute the final Perlin noise value at a given point

(x, y), the algorithm first determines the cell in which the

point lies and identifies the four lattice corners that bound

it. For each corner, the displacement vector from the

corner to the point is calculated, and the dot product of

this displacement vector with the gradient vector at the

corner is computed. These dot products, denoted as 𝑛0,

𝑛1, 𝑛2, 𝑛3 in 2D, represent the contribution of each

corner to the noise value at the input point.

The next step involves blending these contributions

using interpolation. Linear interpolation (lerp) is used to

blend two values, 𝑎 and 𝑏, based on a parameter 𝑡, as

defined by the formula:

𝑙𝑒𝑟𝑝(𝑎, 𝑏, 𝑡) = 𝑎 + 𝑡(𝑏 − 𝑎)

In 2D, this process is extended to bilinear

interpolation. First, horizontal interpolation is performed

between the contributions of the bottom two corners and

the top two corners. Then, vertical interpolation is

applied between these results to compute the final noise

value.

To ensure smooth transitions between cells, the

algorithm modifies the interpolation parameter using a

fade function. The fade function, typically

𝑓(𝑡) = 6𝑡5 − 15𝑡4 + 10𝑡3

transforms the fractional component of the input

coordinate into smoothed values. This function satisfies

the conditions 𝑓(0) = 0, 𝑓(1) = 1, and has zero

derivatives at both 0 and 1. By ensuring that the slope of

the function smoothly transitions to zero at the

boundaries, the fade function eliminates discontinuities

and sharp transitions.

Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

Figure 2. Abrupt transition due to linear interpolation [Source:

https://rtouti.github.io/graphics/perlin-noise-algorithm]

Figure 3. Smoother transition by using fade function [Source:
https://rtouti.github.io/graphics/perlin-noise-algorithm]

The final noise value is computed by combining the

gradient-based contributions of the four corners through

this two-stage interpolation process, with the fade

function applied as the smoothing factor. This

combination of gradient-based contributions, fade

smoothing, and interpolation ensures that the noise

transitions smoothly across cells, producing visually

pleasing and continuous patterns.

F. Fractal Brownian Motion (fBm)

Fractal Brownian Motion (fBm) is a technique used to

combine multiple layers (or octaves) of noise, such as Perlin

noise, to create complex and natural-looking textures or

terrains. Each octave introduces finer details by applying

noise at progressively higher frequencies and lower

amplitudes. This method enhances the realism of the

generated output.

The fBm function is defined as the sum of multiple scaled

octaves of noise. Mathematically, it can be expressed as:

𝑓𝐵𝑚(𝑥, 𝑦) = ∑ 𝑎𝑘𝑃𝑒𝑟𝑙𝑖𝑛𝑁𝑜𝑖𝑠𝑒(𝜆𝑘𝑥, 𝜆𝑘𝑦)

𝑁−1

𝑖=0

where

- 𝑁 is the number of octaves,

- 𝑎𝑘 = 𝑝𝑘 is the amplitude of the 𝑘-th octave, determined

by the persistence 𝑝, where 0 < 𝑝 < 1,

- 𝜆 is the lacunarity, which controls the frequency scaling

between octaves,

- 𝑃𝑒𝑟𝑙𝑖𝑛𝑁𝑜𝑖𝑠𝑒(𝑎, 𝑏) is the Perlin noise function evaluated

at (𝑎, 𝑏).

The parameter 𝜆 (lacunarity) dictates how the frequency

increases between octaves. Each octave’s frequency is scaled

by a factor of 𝜆. A higher lacunarity (𝜆 > 1) results in more

rapid oscillations at higher octaves, introducing finer details

to the noise. Conversely, a lower lacunarity results in slower

transitions and less intricate details.

The parameter 𝑝 (persistence) controls how the

amplitude decreases between octaves. Each subsequent octave

has an amplitude scaled by 𝑝. A higher persistence retains more

strength in higher frequency octaves, creating rough or turbulent

terrains. A lower persistence diminishes the higher frequency

contributions, resulting in smoother terrain.

G. Min-Max Normalization
Min-max normalization scales the values of a dataset to

a predefined range, often [0, 1] or [−1, 1]. This ensures

that the minimum value maps to the lower bound of the

range and the maximum value maps to the upper bound.

All intermediate values are proportionally scaled.

For a value 𝑥, the normalized value 𝑥′ (scales to [0, 1]) is

computed as:

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

To scale to a different range [𝑎, 𝑏], the formula becomes:

𝑥′ = 𝑎 +
𝑥 − 𝑥𝑚𝑖𝑛(𝑏 − 𝑎)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

By applying the same normalization parameters across

chunks (using a global 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥), adjacent chunks

will have aligned value ranges, resulting in smooth

transitions.

H. Tanh Normalization

Tanh normalization uses the hyperbolic tangent (𝑡𝑎𝑛ℎ)

function to scale data. It maps values to a range of [−1, 1]
with a non-linear curve, compressing extreme values

more than intermediate ones. This ensures that the

transitions are smooth while reducing the impact of

outliers.

For a value 𝑥, the normalized value 𝑥’ is computed as:

𝑥′ = tanh(𝑘𝑥)

To scale to a different range [𝑎, 𝑏], the formula becomes:

𝑥′ = 𝑎 +
𝑏 − 𝑎

2
(tanh(𝑘𝑥) + 1)

Here, 𝑘 is a scaling factor that controls the sharpness or

sensitivity of the 𝑡𝑎𝑛ℎ function.

III. IMPLEMENTATION

A. Programming Language and Supporting Tools

The programming language used to implement this project is

Python. Python is chosen for its simplicity, readability, and

the availability of powerful libraries that make it easy to
handle complex mathematical calculations and create

visualizations.

import numpy as np
import matplotlib.pyplot as plt

The libraries NumPy and Matplotlib are used in this project.

NumPy is chosen for its ability to efficiently perform
numerical operations and manage large arrays, which are

important for generating and manipulating noise data.

Matplotlib is used to create clear and detailed visualizations
of the generated patterns, helping to analyze and refine the

results.

Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

B. Defining Terrain Types and Colors

WEIGHTS = [42, 38, 27, 18, 22, 20, 16, 24, 26]
WEIGHTS = np.array(WEIGHTS) / sum(WEIGHTS)
thresholds = np.cumsum(WEIGHTS)
COLORS = [
 # List of colors in RGB form

]

def upper_bound_threshold(height):

 left = 0
 right = len(thresholds) - 1
 pos = -1

 while left <= right:
 middle = (left + right) // 2
 if height < thresholds[middle]:
 pos = middle
 right = middle - 1
 else:
 left = middle + 1

 return pos

WEIGHTS is a list of numbers representing the relative

proportions of different terrain types (e.g., deep ocean, beach,

grassland, or mountains). These weights are normalized to

produce probabilities that sum to 1. The cumulative sum of

these probabilities, stored in thresholds, is then used to

segment the noise values into distinct terrain categories based

on their thresholds.

The COLORS list defines specific RGB values

corresponding to each terrain category. These colors range

from dark blue for deep ocean to browns for higher mountains,

ensuring each terrain type is visually distinct and intuitive.

Because thresholds is an increasing array, binary search can

be used to optimize color assignment

C. Permutation Array

permutation_size = 2**10

def shuffle(array_to_shuffle):
 np.random.shuffle(array_to_shuffle)

def make_permutation():
 P = np.arange(permutation_size, dtype=int)
 shuffle(P)
 return np.concatenate((P, P))

Perm = make_permutation()

Another component of Perlin noise is a permutation array.

Here, permutation_size is chosen as 210, though it can be other

powers of two or arbitrary sizes. The function

make_permutation creates an array P of integers from 0 to

1023, then shuffles them in-place. After shuffling, the code

concatenates P to itself, yielding a 2048-element array called

Perm. This duplication allows simpler lookups later, because

any index beyond 1023 just continues into the second copy of

P, thereby simulating a wrap-around without having to

explicitly do modular arithmetic each time.

D. Gradient Vectors and the Fade Function

def get_constant_vector(v):
 h = v & 3
 if h == 0:
 return np.array([1.0, 1.0])

 elif h == 1:
 return np.array([-1.0, 1.0])
 elif h == 2:
 return np.array([-1.0, -1.0])
 else:
 return np.array([1.0, -1.0])

def fade(t):
 return ((6 * t - 15) * t + 10) * t * t * t

To generate noise, the code requires a way to map the shuffled

integers in the permutation array into actual gradient directions.

The function get_constant_vector takes an integer v, applies a

bitwise operation v & 3 (which is equivalent to taking the value

v modulo 4) to reduce it to one of four possible values. These

vectors act as gradient directions at each lattice point in the noise

function. Meanwhile, the function fade defines a polynomial

that smooths the interpolation parameter 𝑡 so that transitions at

cell boundaries do not produce visible seams.

E. Single-Scale Noise Calculation

def calculate_map(row1, col1, row2, col2, lacunarity):
 global Perm, permutation_size

 row_length = row2 - row1 + 1
 col_length = col2 - col1 + 1

 TR = np.zeros(row_length * col_length)
 TL = np.zeros(row_length * col_length)
 BR = np.zeros(row_length * col_length)
 BL = np.zeros(row_length * col_length)
 U1 = np.zeros(row_length * col_length)
 V1 = np.zeros(row_length * col_length)

 for i in range(row_length):
 for j in range(col_length):
 curx = (col1 + j) * lacunarity
 cury = (row1 + i) * lacunarity

 x_wrapped = int(np.floor(curx)) &

(permutation_size - 1)
 y_wrapped = int(np.floor(cury)) &

(permutation_size - 1)

 x_floor = curx - np.floor(curx)
 y_floor = cury - np.floor(cury)

 TRV = np.array([x_floor - 1.0, y_floor -

1.0])
 TLV = np.array([x_floor, y_floor -

1.0])
 BRV = np.array([x_floor - 1.0, y_floor])
 BLV = np.array([x_floor, y_floor])

 TRCV =

get_constant_vector(Perm[Perm[x_wrapped + 1] + y_wrapped
+ 1])

 TLCV =
get_constant_vector(Perm[Perm[x_wrapped] + y_wrapped
+ 1])

 BRCV =
get_constant_vector(Perm[Perm[x_wrapped + 1] +
y_wrapped])

 BLCV =
get_constant_vector(Perm[Perm[x_wrapped] +
y_wrapped])

 TR[i * col_length + j] = np.dot(TRV, TRCV)
 TL[i * col_length + j] = np.dot(TLV, TLCV)
 BR[i * col_length + j] = np.dot(BRV, BRCV)

Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

 BL[i * col_length + j] = np.dot(BLV, BLCV)

 U1[i * col_length + j] = fade(x_floor)
 V1[i * col_length + j] = fade(y_floor)

 U2 = 1 - U1
 V2 = 1 - V1

 alpha = (U2 * ((V2 * BL) + (V1 * TL))) + (U1 * ((V2

* BR) + (V1 * TR)))

 result = np.zeros((row_length, col_length))

 for i in range(row_length):
 for j in range(col_length):
 result[i, j] = alpha[i * col_length + j]

 return result

The function calculate_map(row1, col1, row2, col2,

lacunarity) generates a slice of noise values for a rectangular

region from (row1,col1) to (row2,col2). To handle all points in

this rectangular region at once, the code effectively “flattens” or

compresses the two-dimensional area into a one-dimensional

strip: each position (𝑖, 𝑗) in the rectangle is mapped to a single

index in arrays such as TR, TL, BR, BL, U1, and V1.

Within this function, TR, TL, BR, and BL store the dot-

product contributions from the top-right, top-left, bottom-right,

and bottom-left corners of each noise cell. Likewise, U1 and V1

store the fade-interpolation parameters along the horizontal (𝑥-

direction) and vertical (𝑦-direction), respectively.

In order to calculate all the noise values at the same time, the

following equation is used. The equation applies the

interpolation to all values and the same time.

𝛼 = 𝑈′ ∘ (𝑉 ′ ∘ 𝐵𝐿 + 𝑉 ∘ 𝑇𝐿) + 𝑈 ∘ (𝑉 ′ ∘ 𝐵𝑅 + 𝑉 ∘ 𝑇𝑅)

where

- 𝛼 is a vector containing the resulting noise value,

- 𝑈 is a vector containing the fade value of the 𝑥-

component of each position,

- 𝑉 is a vector containing the fade value of the y-

component of each position,

- BL, TL, BR, and TR each store the dot-product

contributions from the top-right, top-left, bottom-right,

and bottom-left corners of each noise cell,

- 𝑈′ = [

1 − 𝑈1

1 − 𝑈2

⋮
1 − 𝑈𝑛

] , 𝑉 ′ = [

1 − 𝑉1

1 − 𝑉2

⋮
1 − 𝑉𝑛

]

After the calculation, the strip is converted back into matrix

form.

F. Fractal Brownian Motion and Normalization

def apply_tanh_transform(value_array, k = TANH_K):
 return 0.5 * (np.tanh(TANH_K * (2.0 * value_array -
1.0)) + 1.0)

def calculate_map_with_fbm(row1, col1, row2, col2,
numOctaves):
 global global_minimum, global_maximum,
first_iteration

 persistence = 0.9
 lacunarity = 0.015

 result = np.zeros((row2 - row1 + 1, col2 - col1 +
1))

 for _ in range(numOctaves):
 result = result + persistence *
calculate_map(row1, col1, row2, col2, lacunarity)

 persistence *= 0.5
 lacunarity *= 2.0

 result = (result - global_minimum) / (global_maximum
- global_minimum)

 result = apply_tanh_transform(result)

 return result

To achieve more varied and natural-looking terrain, the

code combines multiple octaves of noise in a function called

calculate_map_with_fbm. This function takes parameters

defining the rectangular region (row1, col1) to (row2, col2), as

well as a number of octaves to generate. Here the equation

used is change slightly than the standard fBm formula.

𝑓𝐵𝑚(𝑐ℎ𝑢𝑛𝑘) = ∑
𝑝

2𝑖
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑚𝑎𝑝(𝑐ℎ𝑢𝑛𝑘, 2𝑖𝜆)

𝑁−1

𝑖=0

When the sum of these octaves is complete, the code

shifts and scales the values according to global minimum and

maximum bounds, bringing them into a preliminary [0, 1]

range. Afterwards, there is an additional transformation via

the function apply_tanh_transform. This tanh transformation

helps control extreme values while preserving mid-range

variations, often giving a more visually appealing distribution

of terrain heights.

F. Procedural Generation of New Chunks

def calculate_new_map():
 global MAP, SIZE, step

 fbm_map = calculate_map_with_fbm(SIZE, 0, SIZE +
step - 1, SIZE - 1, OCTAVES)

 for i in range(SIZE, SIZE + step):
 MAP.append([])

 for j in range(SIZE):
 k = upper_bound_threshold(fbm_map[i - SIZE,
j])
 MAP[i].append(COLORS[k])

 fbm_map = calculate_map_with_fbm(0, SIZE, SIZE +
step - 1, SIZE + step - 1, OCTAVES)

 for i in range(SIZE + step):
 for j in range(step):
 k = upper_bound_threshold(fbm_map[i, j])
 MAP[i].append(COLORS[k])

 SIZE += step

The function calculate_new_map is responsible for

extending the existing map boundaries whenever the user

scrolls beyond the currently generated terrain. The process

begins by generating an additional vertical strip of heightmap

data. This is achieved through the call

calculate_map_with_fbm(SIZE, 0, SIZE + step - 1, SIZE - 1,

OCTAVES), which creates a new region of noise values that

Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

cover rows from SIZE to SIZE + step - 1 and columns from 0

to SIZE - 1. In the subsequent loop from i = SIZE to i < SIZE

+ step, the function appends new rows to MAP and assigns a

color to each cell based on its noise value through

upper_bound_threshold. By doing so, the existing map is

extended downward by step rows.

After creating the vertical strip, the code then produces a

horizontal strip to complete the expansion. The call

calculate_map_with_fbm(0, SIZE, SIZE + step - 1, SIZE +

step - 1, OCTAVES) computes noise data for rows from 0 to

SIZE + step - 1 and columns from SIZE to SIZE + step - 1. A

nested loop then assigns colors to these newly added columns

of cells. At the end of this process, SIZE is incremented by

step, meaning the map is now larger in both dimensions. As a

result, the user can continue scrolling seamlessly in any

direction without encountering an “edge,” because fresh

terrain is always generated and appended to the map structure.

IV. RESULTS AND DISCUSSION

Below is the result of generating a 150 pixel by 150 pixel map.

Figure 4. First generation: 150 pixel by 150 pixel map

After moving the map 5 times to the right and 5 times down,

we get the resulting figure.

Figure 5. First generation: 150 pixel by 150 pixel map after translation

As can be seen above, the new map is consistent with the old

map which demonstrates that procedural generation has worked

successfully.

By tweaking the persistence, lacunarity, and number of

octaves, different terrain styles can be obtained

Figure 6. Second generation: 150 pixel by 150 pixel map with larger persistence

Increasing persistence causes the terrain tends to be more

homogenous and the colors tends toward the extremes.

Figure 7. Third generation: 150 pixel by 150 pixel map with higher lacunarity

Increasing lacunarity causes the terrain to be more dispersed

and have more small details.

Below is a 500 pixel by 500 pixel map with larger number of

octaves.

Figure 8. Fourth generation: 500 pixel by 500 pixel map with larger number of octaves

By increasing the number of octaves, the map contains finer

details but still retains a degree of homogenicity.

Makalah IF2123 Aljabar Linier dan Geometri – Sem. I Tahun 2023/2024

V. APPENDIX

GitHub: https://github.com/BP04/Procedural-Terrain-

Generation-Makalah-IF2123

Explanation Video: https://youtu.be/ogeeM9kZqOI

VI. ACKNOWLEDGMENT

The author is deeply thankful to God Almighty for providing

strength, determination, and opportunity to bring this paper to

completion. The author also expresses deep appreciation to Ir.

Rila Mandala, M.Eng., Ph.D., the lecturer of the IF2123 Linear

Algebra and Geometry course, for his dedicated guidance and

support, which have been a source of inspiration throughout his

teaching journey with the students.

REFERENCES

[1] D. H. Million, “A Project on the Mathematics of Voting and

Apportionment,” 2007. [Online]. Available:

http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf.

[Accessed: Dec. 31, 2024]

[2] R. Touti, “Perlin Noise Algorithm,” 2023. [Online]. Available:

https://rtouti.github.io/graphics/perlin-noise-algorithm. [Accessed: Dec.

31, 2024].

[3] Munir, Rinaldi, “Review Matriks,” 2023. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-01-Review-Matriks-2023.pdf. [Accessed: Dec. 31, 2024].

[4] Munir, Rinaldi, “Vektor di Ruang Euclidean (Bagian 1),” 2024. [Online].

Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-

2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf. [Accessed:

Dec. 31, 2024].

[5] Munir, Rinaldi, “Vektor di Ruang Euclidean (Bagian 1),” 2024. [Online].

Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-12-Vektor-di-Ruang-Euclidean-Bag2-2023.pdf. [Accessed:

Dec. 31, 2024].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 31 Desember 2024

Benedict Presley

13523067

https://github.com/BP04/Procedural-Terrain-Generation-Makalah-IF2123
https://github.com/BP04/Procedural-Terrain-Generation-Makalah-IF2123
https://youtu.be/ogeeM9kZqOI
http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf
https://rtouti.github.io/graphics/perlin-noise-algorithm
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-01-Review-Matriks-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-01-Review-Matriks-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-12-Vektor-di-Ruang-Euclidean-Bag2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-12-Vektor-di-Ruang-Euclidean-Bag2-2023.pdf

