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Abstract—Procedural terrain generation is a pivotal technique 

in computer graphics and interactive applications, enabling the 

creation of expansive, natural-looking environments without the 

overhead of manual modeling. This paper presents a linear algebra 

perspective on procedural terrain generation, focusing particularly 

on Perlin Noise and its extension to fractal Brownian motion. To 

yield multi-scale detail, multiple octaves of noise are summed 

according to user-defined lacunarity and persistence, capturing 

both large landmasses and fine-grained surface features. The noise 

values are subsequently normalized and mapped to terrain types—

such as oceans, beaches, and mountains—through threshold-based 

color assignments. An implementation is provided that 

demonstrates dynamic map expansion and user-controlled 

scrolling, illustrating how these concepts integrate into a scalable, 

interactive system. Ultimately, this paper aims to unify key 

mathematical and computational concepts for generating and 

visualizing procedural terrains that are both efficient to compute 

and plausible in appearance. 

 

Keywords—Fractal Brownian Motion, Linear Algebra, Perlin 
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I.   INTRODUCTION 

Procedural terrain generation has become an essential aspect 

of various applications, ranging from video game design to 

geographic simulations and virtual reality environments. This 

technique allows developers to create complex, realistic, and 

diverse landscapes algorithmically, while avoiding the time-

intensive process of manual design. Traditional procedural 

terrain generation often relies on heuristic methods such as 

Perlin noise, this paper introduces a modified approach that 

integrates linear algebra to enhance the traditional noise-based 

generation methods. 

Perlin noise is a gradient-based noise function commonly 

used in procedural generation to produce natural-looking 

textures and terrain. It generates smooth, continuous patterns by 

interpolating random gradient vectors across a grid. In terrain 

generation, Perlin noise is often used to define elevation values 

at each point on a 2D grid, creating hills, valleys, and other 

natural features. This paper explores a method for calculating 

noise using linear algebraic concepts, including the Hadamard 

product, to introduce greater flexibility and control over the 

generated terrain. 

This paper presents an algorithm for terrain generation that 

reimagines the Perlin noise calculation through linear algebraic 

techniques. Unlike traditional methods that require fixed-size 

grid chunks, this algorithm allows for the calculation of terrain 

chunks of various sizes, offering enhanced flexibility in 

managing terrain scalability and resolution. To texture the 

generated terrain, the algorithm utilizes a color distribution map, 

where each noise value is mapped to a specific color based on 

predefined thresholds. The integration of a flexible color 

distribution map also allows for dynamic customization of 

terrain aesthetics. This adaptability makes the algorithm suitable 

for a wide range of artistic and functional requirements. 

Additionally, the algorithm supports seamless transitions 

between terrain chunks, ensuring that generated landscapes 

appear continuous and coherent. This feature is particularly 

valuable for applications requiring large, interconnected worlds, 

such as open-world games or virtual simulations. 

 

II.  LITERATURE REVIEW 

A. Vectors 

A vector in the context of linear algebra is a quantity that 

has both magnitude and direction that can be represented as 

an ordered list of numbers (often called components). Vectors 

can exist in various dimensions. 

for example, in a 2D plane, a vector 𝑣 can be written as 

[
𝑣𝑥

𝑣𝑦
]. In a 3D plane, a vector 𝑣 and be written as [

𝑣𝑥

𝑣𝑦

𝑣𝑧

]. 

Key properties of vectors include: 

1) Addition: Two vectors of the same dimension can be 

added component-wise. For example, given vectors 𝑢 

and 𝑣 

𝑢 ± 𝑣 = [

𝑢1

𝑢2

⋮
𝑢𝑛

] ± [

𝑣1

𝑣2

⋮
𝑣𝑛

] 

Note that this operation is commutative and associative. 

2) Scalar Multiplication: A vector can be scaled by a scalar 

(a real number), multiplying each component by that 

scalar. For example, given a scalar 𝑐 and a vector 𝑣 

𝑐𝑣 = [

𝑐𝑣1

𝑐𝑣2

⋮
𝑐𝑣𝑛

] 

 

For two scalars 𝑐 and 𝑑 and two vectors 𝑢 and 𝑣, the 

following applies 
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𝑐(𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣 

(𝑐 + 𝑑)𝑢 = 𝑐𝑢 + 𝑑𝑢 

(𝑐𝑑)𝑢 = 𝑐(𝑑𝑢) 

3) Magnitude (Norm): The length or magnitude of a vector 

𝑣 is given by 

||𝑣|| = √𝑣1
2 + 𝑣2

2 + ⋯ + 𝑣𝑛
2 

 

4) Direction: The direction of a vector is the orientation in 

space and is often used in geometry and physics to 

indicate an object’s orientation of movement or force 

application. 

 

B. Dot Product 

The dot product (also known as the scalar product) of two 

vectors 𝑎 and 𝑏 is defined as: 

𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛 

This operation results in a single scalar value. The dot 

product between two vectors measures how much they align 

or project onto each other. It is related to the cosine of the 

angle 𝜃: 

𝑎 ∙ 𝑏 = ||𝑎||||𝑏|| cos(𝜃) 

The dot product is essential in gradient-based noise 

functions such as Perlin noise, where the contribution from 

gradient vectors is computed via dot products with 

displacement vectors. 

 

C. Matrices 

A matrix is a rectangular array of values arranged in rows 

and columns. An 𝑚 × 𝑛 matrix has 𝑚 rows and 𝑛 columns. 

Matrices are powerful tools in linear transformations and can 

represent operations such as rotation, scaling, or shear in 

multiple dimensions. 

Key properties of matrices include: 

1) Addition: Two matrices of the same dimensions can be 

added component-wise. For example, given two matrices 

𝐴 and 𝐵 

[

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

] + [

𝐵11 𝐵12 … 𝐵1𝑛

𝐵21 𝐵22 … 𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐵𝑛1 𝐵𝑛2 … 𝐵𝑛𝑛

] 

= [

𝐴11 + 𝐵11 𝐴12 + 𝐵12 … 𝐴1𝑛 + 𝐵1𝑛

𝐴21 + 𝐵21 𝐴22 + 𝐵22 … 𝐴2𝑛 + 𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 + 𝐵𝑛1 𝐴𝑛2 + 𝐵𝑛2 … 𝐴𝑛𝑛 + 𝐵𝑛𝑛

] 

 

2) Scalar Multiplication: Multiplying a matrix by a scalar 

multiplies each entry in the matrix by that scalar. For 

example, given a scalar 𝑐 and a matrix 𝐴 

𝑐 [

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

] = [

𝑐𝐴11 𝑐𝐴12 … 𝑐𝐴1𝑛

𝑐𝐴21 𝑐𝐴22 … 𝑐𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝑐𝐴𝑛1 𝑐𝐴𝑛2 … 𝑐𝐴𝑛𝑛

] 

 

3) Matrix Multiplication: If 𝐴 if an 𝑚 × 𝑝 matrix and 𝐵 is a 

𝑝 × 𝑛 matrix, then their resulting multiplication 𝐶 is an 

𝑚 × 𝑛 matrix. 𝐶 is given by 

𝐶𝑖𝑗 = ∑ 𝐴𝑖𝑘𝐵𝑘𝑗

𝑝

𝑘=1
 

4) Transpose: The transpose of a matrix 𝐴 is formed by 

flipping it over its diagonal, turning rows into columns 

and vice versa. The transpose of a matrix 𝐴 is written as 

𝐴𝑇 . 

 

D. Hadamard Product 

The Hadamard product (also known as the element-wise 

product) of two matrices 𝐴 and 𝐵 of the same dimension is 

given by multiplying corresponding entries of 𝐴 and 𝐵 

together. 

[

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … 𝐴2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

] ∘ [

𝐵11 𝐵12 … 𝐵1𝑛

𝐵21 𝐵22 … 𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐵𝑛1 𝐵𝑛2 … 𝐵𝑛𝑛

] 

= [

𝐴11𝐵11 𝐴12𝐵12 … 𝐴1𝑛𝐵1𝑛

𝐴21𝐵21 𝐴22𝐵22 … 𝐴2𝑛𝐵2𝑛

⋮ ⋮ ⋱ ⋮
𝐴𝑛1𝐵𝑛1 𝐴𝑛2𝐵𝑛2 … 𝐴𝑛𝑛𝐵𝑛𝑛

] 

 

The Hadamard product is used to apply element-wise 

scaling. In certain noise algorithms, particularly when 

working with masks or blending different terrain layers, 

element-wise operations can be applied to combine features 

pixel-by-pixel or sample-by-sample. 

 

Key properties of Hadamard product include: 

1) Commutative: 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴 

2) Associative: (𝐴 ∘ 𝐵) ∘ 𝐶 = 𝐴 ∘ (𝐵 ∘ 𝐶) 

3) Distributive over addition: 𝐴 ∘ (𝐵 + 𝐶) = 𝐴 ∘ 𝐵 + 𝐴 ∘ 𝐶 

 

E. Perlin Noise 

Perlin noise is a gradient-based noise function introduced 

by Ken Perlin. It is widely used in computer graphics and 

procedural generation for creating natural-looking textures 

and terrains. The core idea is to define a pseudo-random 

gradient at each lattice (grid) point and blend these gradients 

smoothly to generate coherent noise values across the space. 

 

   

Figure 1. Example of perlin noise map [Source: 

https://rtouti.github.io/graphics/perlin-noise-algorithm] 

Perlin noise is generated in the following steps: 

1. Gradient Vector Generation 

The generation of 2D Perlin noise begins by 

establishing a grid or lattice structure over the 2D plane, 

with each intersection of grid lines corresponding to a 

lattice point. For any given position (𝑥, 𝑦) within this 

plane, the surrounding cell, defined by the integer 
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coordinates of its four corner lattice points, is identified. 

These lattice points serve as reference anchors for 

calculating the noise value at the given position. 

At each lattice point, a gradient vector is assigned. 

These gradient vectors may either be randomly generated 

and normalized to a fixed length or selected from a 

predefined set of constant directions, such as vectors 

uniformly distributed at 45° intervals in 2D. These 

gradients represent directional influences that modulate 

the contribution of each lattice point to the noise value at 

a given position. 

The role of gradient vectors is to facilitate a localized 

and continuous influence on the noise field. For each 

corner of the cell, a displacement vector is computed, 

representing the difference between the position (𝑥, 𝑦) 

and the coordinates of the lattice point. The dot product 

of the gradient vector and the displacement vector is then 

calculated, yielding a scalar value. This scalar value 

quantifies the degree of alignment between the 

displacement and the gradient direction, determining the 

extent of the lattice point's contribution to the noise value 

at the position. 

2. Permutation Array 

Permutation array in Perlin noise is a data structure 

that facilitates the mapping of integer lattice coordinates 

to pseudo-random gradients. The permutation array is a 

shuffled list of integers, typically ranging from 0 to 255 

in the classic implementation. (Note that the size of 

permutation array doesn’t have to be 256). To ensure 

consistency and wrap-around behavior, this array is 

duplicated, resulting in a structure of length 512, where 

the first 256 integers are repeated. 

The primary purpose of the permutation array is to 

provide a deterministic yet pseudo-random mapping 

from grid points to gradient vectors. When computing 

Perlin noise at a given coordinate (𝑥, 𝑦), the integer parts 

of x and y are converted into lattice indices. This lookup 

determines which gradient vector is associated with each 

lattice point in the cell surrounding the input coordinate. 

Importantly, the permutation array ensures that the same 

lattice point always maps to the same gradient vector, 

guaranteeing consistency across the noise field. 

The generation of the permutation array begins with a 

list of sequential integers (e.g., 0 to 255). This list is 

shuffled using a pseudorandom number generator to 

introduce randomness. After shuffling, the list is 

appended to itself, creating a structure that inherently 

supports wrap-around behavior. 

3. Contribution Calculation 

In the Perlin noise algorithm, constant vectors are used 

at lattice points to ensure smooth transitions across the 

noise field. These constant vectors are typically chosen 

from a finite set of predefined directions. This approach 

avoids the need to generate fully random gradient vectors 

at runtime, which would require computationally 

expensive normalization. Instead, the predefined set 

ensures a consistent and uniform distribution of 

gradients, contributing to the smoothness and continuity 

of the noise. 

The interaction between the constant gradients and the 

input point is realized through the dot product operation. 

At each lattice point, the gradient vector represents the 

local orientation or slope. For a given input position  

(𝑥, 𝑦) within a cell, a displacement vector is computed 

from each lattice point to the input point, capturing the 

relative position and direction. The dot product between 

the gradient vector and the displacement vector yields a 

scalar value that quantifies how strongly the 

displacement aligns with the gradient. This scalar value 

represents the contribution of that lattice point to the 

overall noise value at (𝑥, 𝑦). 

The dot product mechanism ensures that the influence 

of each lattice point is determined not only by its 

proximity to the input point but also by the alignment of 

its gradient with the displacement. As a result, the 

contributions from all four corners of the cell vary 

smoothly, depending on the position within the cell. 

 

4. Interpolation 

To compute the final Perlin noise value at a given point 

(x, y), the algorithm first determines the cell in which the 

point lies and identifies the four lattice corners that bound 

it. For each corner, the displacement vector from the 

corner to the point is calculated, and the dot product of 

this displacement vector with the gradient vector at the 

corner is computed. These dot products, denoted as 𝑛0, 

𝑛1, 𝑛2, 𝑛3 in 2D, represent the contribution of each 

corner to the noise value at the input point. 

The next step involves blending these contributions 

using interpolation. Linear interpolation (lerp) is used to 

blend two values, 𝑎 and 𝑏, based on a parameter 𝑡, as 

defined by the formula: 

𝑙𝑒𝑟𝑝(𝑎, 𝑏, 𝑡)  =  𝑎 +  𝑡(𝑏 −  𝑎) 

In 2D, this process is extended to bilinear 

interpolation. First, horizontal interpolation is performed 

between the contributions of the bottom two corners and 

the top two corners. Then, vertical interpolation is 

applied between these results to compute the final noise 

value. 

To ensure smooth transitions between cells, the 

algorithm modifies the interpolation parameter using a 

fade function. The fade function, typically 

𝑓(𝑡)  =  6𝑡5  −  15𝑡4  +  10𝑡3 

transforms the fractional component of the input 

coordinate into smoothed values. This function satisfies 

the conditions 𝑓(0)  =  0, 𝑓(1)  =  1, and has zero 

derivatives at both 0 and 1. By ensuring that the slope of 

the function smoothly transitions to zero at the 

boundaries, the fade function eliminates discontinuities 

and sharp transitions. 
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Figure 2. Abrupt transition due to linear interpolation [Source: 

https://rtouti.github.io/graphics/perlin-noise-algorithm] 

 

   

Figure 3. Smoother transition by using fade function [Source: 
https://rtouti.github.io/graphics/perlin-noise-algorithm] 

The final noise value is computed by combining the 

gradient-based contributions of the four corners through 

this two-stage interpolation process, with the fade 

function applied as the smoothing factor. This 

combination of gradient-based contributions, fade 

smoothing, and interpolation ensures that the noise 

transitions smoothly across cells, producing visually 

pleasing and continuous patterns. 

 

F. Fractal Brownian Motion (fBm) 

Fractal Brownian Motion (fBm) is a technique used to 

combine multiple layers (or octaves) of noise, such as Perlin 

noise, to create complex and natural-looking textures or 

terrains. Each octave introduces finer details by applying 

noise at progressively higher frequencies and lower 

amplitudes. This method enhances the realism of the 

generated output. 

The fBm function is defined as the sum of multiple scaled 

octaves of noise. Mathematically, it can be expressed as: 

𝑓𝐵𝑚(𝑥, 𝑦) = ∑ 𝑎𝑘𝑃𝑒𝑟𝑙𝑖𝑛𝑁𝑜𝑖𝑠𝑒(𝜆𝑘𝑥, 𝜆𝑘𝑦)

𝑁−1

𝑖=0

 

where 

- 𝑁 is the number of octaves, 

- 𝑎𝑘 = 𝑝𝑘  is the amplitude of the 𝑘-th octave, determined 

by the persistence 𝑝, where 0 < 𝑝 < 1, 

- 𝜆 is the lacunarity, which controls the frequency scaling 

between octaves, 

- 𝑃𝑒𝑟𝑙𝑖𝑛𝑁𝑜𝑖𝑠𝑒(𝑎, 𝑏) is the Perlin noise function evaluated 

at (𝑎, 𝑏). 

The parameter 𝜆 (lacunarity) dictates how the frequency 

increases between octaves. Each octave’s frequency is scaled 

by a factor of 𝜆. A higher lacunarity (𝜆 > 1) results in more 

rapid oscillations at higher octaves, introducing finer details 

to the noise. Conversely, a lower lacunarity results in slower 

transitions and less intricate details. 

The parameter 𝑝 (persistence) controls how the 

amplitude decreases between octaves. Each subsequent octave 

has an amplitude scaled by 𝑝. A higher persistence retains more 

strength in higher frequency octaves, creating rough or turbulent 

terrains. A lower persistence diminishes the higher frequency 

contributions, resulting in smoother terrain. 

 

G. Min-Max Normalization 
Min-max normalization scales the values of a dataset to 

a predefined range, often [0, 1] or [−1, 1]. This ensures 

that the minimum value maps to the lower bound of the 

range and the maximum value maps to the upper bound. 

All intermediate values are proportionally scaled. 

For a value 𝑥, the normalized value 𝑥′ (scales to [0, 1]) is 

computed as: 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

To scale to a different range [𝑎, 𝑏], the formula becomes: 

𝑥′ = 𝑎 +
𝑥 − 𝑥𝑚𝑖𝑛(𝑏 − 𝑎)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

By applying the same normalization parameters across 

chunks (using a global 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥), adjacent chunks 

will have aligned value ranges, resulting in smooth 

transitions. 

 

H. Tanh Normalization 

Tanh normalization uses the hyperbolic tangent (𝑡𝑎𝑛ℎ) 

function to scale data. It maps values to a range of [−1, 1] 
with a non-linear curve, compressing extreme values 

more than intermediate ones. This ensures that the 

transitions are smooth while reducing the impact of 

outliers. 

For a value 𝑥, the normalized value 𝑥’ is computed as: 

𝑥′ = tanh(𝑘𝑥) 

To scale to a different range [𝑎, 𝑏], the formula becomes: 

𝑥′ = 𝑎 +
𝑏 − 𝑎

2
(tanh(𝑘𝑥) + 1) 

Here, 𝑘 is a scaling factor that controls the sharpness or 

sensitivity of the 𝑡𝑎𝑛ℎ function. 

 

III.   IMPLEMENTATION 

A. Programming Language and Supporting Tools 

The programming language used to implement this project is 

Python. Python is chosen for its simplicity, readability, and 

the availability of powerful libraries that make it easy to 
handle complex mathematical calculations and create 

visualizations. 

 
import numpy as np 
import matplotlib.pyplot as plt 

 

The libraries NumPy and Matplotlib are used in this project. 

NumPy is chosen for its ability to efficiently perform 
numerical operations and manage large arrays, which are 

important for generating and manipulating noise data. 

Matplotlib is used to create clear and detailed visualizations 
of the generated patterns, helping to analyze and refine the 

results. 
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B. Defining Terrain Types and Colors 

WEIGHTS = [42, 38, 27, 18, 22, 20, 16, 24, 26] 
WEIGHTS = np.array(WEIGHTS) / sum(WEIGHTS) 
thresholds = np.cumsum(WEIGHTS) 
COLORS = [ 
      # List of colors in RGB form 

] 
 
def upper_bound_threshold(height): 

    left = 0 
    right = len(thresholds) - 1 
    pos = -1 
 
    while left <= right: 
        middle = (left + right) // 2 
        if height < thresholds[middle]: 
            pos = middle 
            right = middle - 1 
        else: 
            left = middle + 1 
 
    return pos 

WEIGHTS is a list of numbers representing the relative 

proportions of different terrain types (e.g., deep ocean, beach, 

grassland, or mountains). These weights are normalized to 

produce probabilities that sum to 1. The cumulative sum of 

these probabilities, stored in thresholds, is then used to 

segment the noise values into distinct terrain categories based 

on their thresholds. 

The COLORS list defines specific RGB values 

corresponding to each terrain category. These colors range 

from dark blue for deep ocean to browns for higher mountains, 

ensuring each terrain type is visually distinct and intuitive.  

Because thresholds is an increasing array, binary search can 

be used to optimize color assignment 

 

C. Permutation Array 

permutation_size = 2**10 
 
def shuffle(array_to_shuffle): 
    np.random.shuffle(array_to_shuffle) 
 
def make_permutation(): 
    P = np.arange(permutation_size, dtype=int) 
    shuffle(P) 
    return np.concatenate((P, P)) 
 
Perm = make_permutation() 

 

Another component of Perlin noise is a permutation array. 

Here, permutation_size is chosen as 210, though it can be other 

powers of two or arbitrary sizes. The function 

make_permutation creates an array P of integers from 0 to 

1023, then shuffles them in-place. After shuffling, the code 

concatenates P to itself, yielding a 2048-element array called 

Perm. This duplication allows simpler lookups later, because 

any index beyond 1023 just continues into the second copy of 

P, thereby simulating a wrap-around without having to 

explicitly do modular arithmetic each time. 

 

D. Gradient Vectors and the Fade Function 

def get_constant_vector(v): 
    h = v & 3 
    if h == 0: 
        return np.array([1.0, 1.0]) 

    elif h == 1: 
        return np.array([-1.0, 1.0]) 
    elif h == 2: 
        return np.array([-1.0, -1.0]) 
    else: 
        return np.array([1.0, -1.0]) 
 
def fade(t): 
    return ((6 * t - 15) * t + 10) * t * t * t 

 

To generate noise, the code requires a way to map the shuffled 

integers in the permutation array into actual gradient directions. 

The function get_constant_vector takes an integer v, applies a 

bitwise operation v & 3 (which is equivalent to taking the value 

v modulo 4) to reduce it to one of four possible values. These 

vectors act as gradient directions at each lattice point in the noise 

function. Meanwhile, the function fade defines a polynomial 

that smooths the interpolation parameter 𝑡 so that transitions at 

cell boundaries do not produce visible seams. 

 

E. Single-Scale Noise Calculation 

def calculate_map(row1, col1, row2, col2, lacunarity): 
    global Perm, permutation_size 
 
    row_length = row2 - row1 + 1 
    col_length = col2 - col1 + 1 
 
    TR = np.zeros(row_length * col_length) 
    TL = np.zeros(row_length * col_length) 
    BR = np.zeros(row_length * col_length) 
    BL = np.zeros(row_length * col_length) 
    U1 = np.zeros(row_length * col_length) 
    V1 = np.zeros(row_length * col_length) 
 
    for i in range(row_length): 
        for j in range(col_length): 
            curx = (col1 + j) * lacunarity 
            cury = (row1 + i) * lacunarity 

 
            x_wrapped = int(np.floor(curx)) & 

(permutation_size - 1) 
            y_wrapped = int(np.floor(cury)) & 

(permutation_size - 1) 
 
            x_floor = curx - np.floor(curx) 
            y_floor = cury - np.floor(cury) 
 
            TRV = np.array([x_floor - 1.0, y_floor - 

1.0]) 
            TLV = np.array([x_floor,       y_floor - 

1.0]) 
            BRV = np.array([x_floor - 1.0, y_floor]) 
            BLV = np.array([x_floor,       y_floor]) 
 
            TRCV = 

get_constant_vector(Perm[Perm[x_wrapped + 1] + y_wrapped 
+ 1]) 

            TLCV = 
get_constant_vector(Perm[Perm[x_wrapped]     + y_wrapped 
+ 1]) 

            BRCV = 
get_constant_vector(Perm[Perm[x_wrapped + 1] + 
y_wrapped]) 

            BLCV = 
get_constant_vector(Perm[Perm[x_wrapped]     + 
y_wrapped]) 

 
            TR[i * col_length + j] = np.dot(TRV, TRCV) 
            TL[i * col_length + j] = np.dot(TLV, TLCV) 
            BR[i * col_length + j] = np.dot(BRV, BRCV) 
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            BL[i * col_length + j] = np.dot(BLV, BLCV) 
 
            U1[i * col_length + j] = fade(x_floor) 
            V1[i * col_length + j] = fade(y_floor) 
 
    U2 = 1 - U1 
    V2 = 1 - V1 
 
    alpha = (U2 * ((V2 * BL) + (V1 * TL))) + (U1 * ((V2 

* BR) + (V1 * TR))) 
 
    result = np.zeros((row_length, col_length)) 
 
    for i in range(row_length): 
        for j in range(col_length): 
            result[i, j] = alpha[i * col_length + j] 
     

    return result 

  

The function calculate_map(row1, col1, row2, col2, 

lacunarity) generates a slice of noise values for a rectangular 

region from (row1,col1) to (row2,col2). To handle all points in 

this rectangular region at once, the code effectively “flattens” or 

compresses the two-dimensional area into a one-dimensional 

strip: each position (𝑖, 𝑗) in the rectangle is mapped to a single 

index in arrays such as TR, TL, BR, BL, U1, and V1. 

Within this function, TR, TL, BR, and BL store the dot-

product contributions from the top-right, top-left, bottom-right, 

and bottom-left corners of each noise cell. Likewise, U1 and V1 

store the fade-interpolation parameters along the horizontal (𝑥-

direction) and vertical (𝑦-direction), respectively. 

In order to calculate all the noise values at the same time, the 

following equation is used. The equation applies the 

interpolation to all values and the same time. 

𝛼 = 𝑈′ ∘ (𝑉 ′ ∘ 𝐵𝐿 + 𝑉 ∘ 𝑇𝐿) + 𝑈 ∘ (𝑉 ′ ∘ 𝐵𝑅 + 𝑉 ∘ 𝑇𝑅) 

where 

- 𝛼 is a vector containing the resulting noise value, 

- 𝑈 is a vector containing the fade value of the 𝑥-

component of each position, 

- 𝑉 is a vector containing the fade value of the y-

component of each position, 

- BL, TL, BR, and TR each store the dot-product 

contributions from the top-right, top-left, bottom-right, 

and bottom-left corners of each noise cell, 

- 𝑈′ = [

1 − 𝑈1

1 − 𝑈2

⋮
1 − 𝑈𝑛

] , 𝑉 ′ = [

1 − 𝑉1

1 − 𝑉2

⋮
1 − 𝑉𝑛

] 

After the calculation, the strip is converted back into matrix 

form. 

 

F. Fractal Brownian Motion and Normalization 

def apply_tanh_transform(value_array, k = TANH_K): 
    return 0.5 * (np.tanh(TANH_K * (2.0 * value_array - 
1.0)) + 1.0) 
 
def calculate_map_with_fbm(row1, col1, row2, col2, 
numOctaves): 
    global global_minimum, global_maximum, 
first_iteration 
 
    persistence = 0.9 
    lacunarity  = 0.015 
 

    result = np.zeros((row2 - row1 + 1, col2 - col1 + 
1)) 
 
    for _ in range(numOctaves): 
        result = result + persistence * 
calculate_map(row1, col1, row2, col2, lacunarity) 
 
        persistence *= 0.5 
        lacunarity  *= 2.0 
 
    result = (result - global_minimum) / (global_maximum 
- global_minimum) 
 
    result = apply_tanh_transform(result) 
 
    return result 

 

To achieve more varied and natural-looking terrain, the 

code combines multiple octaves of noise in a function called 

calculate_map_with_fbm. This function takes parameters 

defining the rectangular region (row1, col1) to (row2, col2), as 

well as a number of octaves to generate. Here the equation 

used is change slightly than the standard fBm formula. 

𝑓𝐵𝑚(𝑐ℎ𝑢𝑛𝑘) = ∑
𝑝

2𝑖
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑚𝑎𝑝(𝑐ℎ𝑢𝑛𝑘, 2𝑖𝜆)

𝑁−1

𝑖=0

 

When the sum of these octaves is complete, the code 

shifts and scales the values according to global minimum and 

maximum bounds, bringing them into a preliminary [0, 1] 

range. Afterwards, there is an additional transformation via 

the function apply_tanh_transform. This tanh transformation 

helps control extreme values while preserving mid-range 

variations, often giving a more visually appealing distribution 

of terrain heights. 

 

F. Procedural Generation of New Chunks 

def calculate_new_map(): 
    global MAP, SIZE, step 
 
    fbm_map = calculate_map_with_fbm(SIZE, 0, SIZE + 
step - 1, SIZE - 1, OCTAVES) 
 
    for i in range(SIZE, SIZE + step): 
        MAP.append([]) 
 
        for j in range(SIZE): 
            k = upper_bound_threshold(fbm_map[i - SIZE, 
j]) 
            MAP[i].append(COLORS[k]) 
 
    fbm_map = calculate_map_with_fbm(0, SIZE, SIZE + 
step - 1, SIZE + step - 1, OCTAVES) 
 
    for i in range(SIZE + step): 
        for j in range(step): 
            k = upper_bound_threshold(fbm_map[i, j]) 
            MAP[i].append(COLORS[k]) 
     
    SIZE += step 

 

The function calculate_new_map is responsible for 

extending the existing map boundaries whenever the user 

scrolls beyond the currently generated terrain. The process 

begins by generating an additional vertical strip of heightmap 

data. This is achieved through the call 

calculate_map_with_fbm(SIZE, 0, SIZE + step - 1, SIZE - 1, 

OCTAVES), which creates a new region of noise values that 
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cover rows from SIZE to SIZE + step - 1 and columns from 0 

to SIZE - 1. In the subsequent loop from i = SIZE to i < SIZE 

+ step, the function appends new rows to MAP and assigns a 

color to each cell based on its noise value through 

upper_bound_threshold. By doing so, the existing map is 

extended downward by step rows. 

After creating the vertical strip, the code then produces a 

horizontal strip to complete the expansion. The call 

calculate_map_with_fbm(0, SIZE, SIZE + step - 1, SIZE + 

step - 1, OCTAVES) computes noise data for rows from 0 to 

SIZE + step - 1 and columns from SIZE to SIZE + step - 1. A 

nested loop then assigns colors to these newly added columns 

of cells. At the end of this process, SIZE is incremented by 

step, meaning the map is now larger in both dimensions. As a 

result, the user can continue scrolling seamlessly in any 

direction without encountering an “edge,” because fresh 

terrain is always generated and appended to the map structure. 

 

IV.   RESULTS AND DISCUSSION 

Below is the result of generating a 150 pixel by 150 pixel map. 

 

Figure 4. First generation: 150 pixel by 150 pixel map 

After moving the map 5 times to the right and 5 times down, 

we get the resulting figure. 

 

Figure 5. First generation: 150 pixel by 150 pixel map after translation 

As can be seen above, the new map is consistent with the old 

map which demonstrates that procedural generation has worked 

successfully. 

By tweaking the persistence, lacunarity, and number of 

octaves, different terrain styles can be obtained 

 

Figure 6. Second generation: 150 pixel by 150 pixel map with larger persistence 

Increasing persistence causes the terrain tends to be more 

homogenous and the colors tends toward the extremes. 

 

Figure 7. Third generation: 150 pixel by 150 pixel map with higher lacunarity 

Increasing lacunarity causes the terrain to be more dispersed 

and have more small details. 

Below is a 500 pixel by 500 pixel map with larger number of 

octaves. 

 

Figure 8. Fourth generation: 500 pixel by 500 pixel map with larger number of octaves 

By increasing the number of octaves, the map contains finer 

details but still retains a degree of homogenicity. 
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V.   APPENDIX 

GitHub: https://github.com/BP04/Procedural-Terrain-

Generation-Makalah-IF2123  

Explanation Video: https://youtu.be/ogeeM9kZqOI 
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